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Recap: Objectives of Constrained Control

xT = f(x, u) (x,u)eX,U

Design control law u = k(x) such that the system:

Satifies constraints : {x;} C X, {y;} CU
Is stable: limj_ s Xi =0

Optimizes “performance”

=

Maximizes the set {xp | Conditions 1-3 are met }
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Limitations of Linear Controllers
5

System:
Best any nonlinear
controller can do " 1 1 1
*=lo 1|* " |os|"

\ Linear. Constraints:
<N 0F controller
works Xo={x|lIx[l« <5}

\ U= {u |l < 1)

Consider an LQR controller,
with @ =1/, R=1.

25 0 5
X1

Does linear control work?

Yes, but the region where it works is very small

Use nonlinear control (MPC) to increase the region of attraction
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Invariance and Controlled Invariance

e Invariant set
— Region where autonomous system satisfies constraints for all time

¢ Control invariant set

— Region where there exists a controller so that the system satisfies the
constraints for all time

If we have a controlled invariant set C C X, we can generate a controller
k(x) :=argmin{g(x, u) | f(x,u) e C, ue U}

so that for all x € C, f(x,k(x)) € C C X and k(x) € U.

Control invariant sets are almost always too complex to compute.
e MPC is a method of implicitly describing a control invariant set that is
easy to represent and compute!

Model Predictive Control 5-4 Model Predictive Control ME-425



Outline

1. MPC: Key Points lllustrated
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MPC: Optimization in the loop

u*(x) := argmin

N—1
Z /(X,', U,‘) aF Vf(XN)
i=0

st xo=x measurement
Xit1 = f(x;, uj) system model
g(x, 1)) <0 constraints
N
u(x) = @) - uh—1} plant state x

Plant —— Output y

At each sample time:

e Measure /estimate current state

e Find the optimal input sequence for the entire planning window N

e Implement only the first control action

Model Predictive Control
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History of MPC

e Original concept: Propoi in 1963

e Mid-70's: Richalet proposed the MPC technique (called it “Model
Predictive Heuristic Control (MPHC)")

e Late 70's: Cutler and Ramaker introduced Dynamic Matrix Control
(DMCQ). Hugely successful in the petro-chemical industry.

— Many methods followed: e.g., Quadratic Dynamic Matrix Control
(QDMC), Adaptive Predictive Control (APC), Generalized Predictive
Control (GPC), Sequential Open Loop Optimization (SOLO), ...

— Constraints were generally treated in an ad-hoc fashion

e Mid-90's: an extensive theoretical effort devoted to provide conditions for
guaranteeing feasibility and closed-loop stability

e 00's: development of tractable robust MPC approaches; nonlinear and
hybrid MPC; MPC for very fast systems

e 10's: stochastic MPC; distributed large-scale MPC; economic MPC
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Receding Horizon Control : The Motivation

xT = f(x, u) (x,u)eX,U

Design control law v = k(x) such that the system:
Satifies constraints : {x;} C X, {u;} CU
Is stable: im0 Xi =0

Optimizes “performance”

=

Maximizes the set {xp | Conditions 1-3 are met }

In this lecture, we will demonstrate that these objectives can be met in a
predictive control framework.

(and later)

5. Is robust to noise

6. Can be computed efficiently and reliably for a wide range of systems
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Optimal Control (Want we’d like to solve)

Infinite horizon optimal control

V*(x0) = min Z 1(xi, u;)

s.t. Xip1 = (X, up)
(X,‘, U,‘) eX U

« Stage cost /(x, u) describes “cost” of being in state x and applying input u

e Optimizing over a trajectory provides a tradeoff between short- and
long-term benefits of actions

e We'll see that such a control law has many beneficial properties...
... but we can’'t compute it: there are an infinite number of variables
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Predictive Control (What we can sometimes solve)

Finite-time optimal control

N-1

Vi(xo) = min > 106, u) + Ve(xn) (1)

i=0

st xip1 = (X, uj)
(X,', U,') e X, U
xy € Xr

Truncate after a finite horizon:

e V: : Approximates the 'tail" of the cost

e Xr : Approximates the ‘tail’ of the constraints

Optimal control law: Ky(x) 1= uj
where u* == {45, ..., Un_q} is the optimizer of (1)
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Nonlinear MPC (NMPC) Properties

Pros Cons
e Any model o Very computationally demanding in
— linear the general case
— nonlinear ¢ May or may not be stable
— single/multivariable « May or may not be invariant
— time delays
— constraints
— etc

e Any objective:
— sum of squared errors
— sum of absolute errors (i.e.,
integral)
worst error over time
economic objective
— etc
This lecture: o Conditions ensuring invariance and stability by design

e Systems for which optimization is computationally tractable
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Example: Cessna Citation Aircraft //‘gyﬁ,/

Linearized continuous-time model:

(at altitude of 5000m and a speed of 128.2 m/sec) ";m
[—1.2822 0 0.98 0 —-0.3
| o 0 1o |0
| —5.4293 0 —1.8366 0 —17 Y
| —128.2 128.2 0 0 0
o100,
Y=o o 0 1

e Input: elevator angle
e States: xq: angle of attack, x»: pitch angle, x3: pitch rate, x4: altitude
Outputs: pitch angle and altitude

o Constraints:elevator angle £0.262rad (415°), elevator rate +0.524rad
(£60°), pitch angle £0.349 (£39°)

Open-loop response is unstable (open-loop poles: 0, 0, —1.5594 + 2.29/)
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LQR and Linear MPC with Quadratic Cost

¢ Quadratic performance measure

e Linear system dynamics

e Linear constraints on inputs and states

LQR
J*(x) = min ;x,-TQx,- + u Ru;

s.t. Xj11 = Ax; + Bu;

Xo =X

MPC

N—-1

J(x) = TT ZX/TQX/ + Ui Ru;

=0
s.t. xit1 = Ax; + Bu;
Xo =X
b > Cx; + Du;

Assume: Q=QT =0, R=RT >0

Model Predictive Control 5-13
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Example: LQR with saturation
Linear quadratic regulator with saturated inputs.

At time t = 0 the plane is flying with a deviation of
10m of the desired altitude, i.e. xo = [0;0; 0; 10]

200 T T T T 2 o
= g
£ 100 1 =
><<r @
§ 0 0 =
2 5]
< -100 1-1 é
o

-200 L L L L —2

0 2 4 6 8 10

Time (sec)

o
o

1
I
o

Elevator angle u (rad)
(=]

4 6 8 10
Time (sec)

o
n
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Problem parameters:

Sampling time 0.25sec,
Q=I/,R=10

o Closed-loop system is
unstable

e Applying LQR control
and saturating the
controller can lead to
instability!

Model Predictive Control ME-425



Example: MPC with Bound Constraints on Inputs

MPC controller with input constraints |u;| < 0.262 Problem parameters:

Sampling time 0.25sec,
Q=I/,R=10,N=10

40 1 5 The MPC controller uses
—_ ©
E 20 05 =, the knowledge that the
x . .
5 o o & elevator will saturate, but it
3 i= .
2 5]
£ 055 does not consider the rate
&  constraints.
—40 L L L L _1
0 2 4 6 8 10
Time (sec)
05 = System does not

converge to desired

steady-state but to a
] limit cycle

0 2 4 6 8 10
Time (sec)

Elevator angle u (rad)
(=]
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Example: MPC with all Input Constraints

MPC controller with input constraints |u;| < 0.262 Problem parameters:

and rate constraints |i;| < 0.349 Sampling time 0.25sec,
approximated by |ux — ug—1| < 0.349T, QR=I/,R=10, N=10

The MPC controller
considers all constraints on
the actuator

n
o
o
N

-
(=]
o

o
|
o
)

Altitude X, (m)
Pitch angle x, (rad)

|
o
1
©
£

, X X . o Closed-loop system is
2 4 6 8 1
Time (sec) stable

o

o
[N

o Efficient use of the
control authority

o
o

1
o
=

Elevator angle u (rad)
o

1
o
N

4 6 8 10
Time (sec)

o
n
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Example: Inclusion of state constraints

MPC controller with input constraints |u;| < 0.262

and rate constraints |i;| < 0.349

approximated by |ux — ug—1| < 0.349T,

150 05 5
£ s
E T
= 00 o gm
® 50 1 ©
E ~05%8
= 0 : 5
< - . o s
Pitch angle ~-0.9, i.e. -50 T
_50 . A h " _1
0 2 4 6 8 10
Time (sec)
T 05
>
<@
2 o
5
©
>
Q@ i i i i
w 05, 2 4 6 8 10

Time (sec)

Model Predictive Control

Problem parameters:

Sampling time 0.25sec,
Q=I/,R=10,N=10

Increase step:

At time t = 0 the plane is
flying with a deviation of
100m of the desired
altitude, i.e.

X0 = [0;0; 0; 100]

e Pitch angle too large
during transient
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Example: Inclusion of state constraints

MPC controller with input constraints |u;| < 0.262 Problem parameters:

and rate constraints |i;| < 0.349 Sampling time 0.25sec,
approximated by |ux — ug—1| < 0.349T, QR=I/,R=10, N=10

150 . ~ 04 = Add state constraints for
E 100 Constraint @angle active loo S passenger comfort:
é 50 : 0 %
2 < |x2| <0.349
= 0 -0.2§

2
-0 2 4 6 8 10
Time (sec)

0.5

Elevator angle u (rad)
o
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Example: Short horizon

MPC controller with input constraints |u;| < 0.262 Problem parameters:

and rate constraints |i;| < 0.349 Sampling time 0.25sec,
approximated by |ux — ug—1| < 0.349T, Q=I/,R=10 N=4
20 . . . i 05 Decrease in the prediction
£ 3“ horizon causes loss of the
5" o 1o 1; stability properties
E é Next: How to ensure
-20 : . : . s stability and constraint
0 2 4 6 8 10 . . .
Time (sec) satisfaction for all choices
g 05 of @, R and N.
ﬁ -0.5 L “‘ é L

Time (sec)
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Outline

2. Stability and Invariance of MPC
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Loss of Feasibility and Stability

What can go wrong with “standard” MPC?

e No feasibility guarantee, i.e., the MPC N-1
problem may not have a solution rDllp Z xiTQx;i + uiT Ruj
e No stability guarantee, i.e., trajectories may i=0

not converge to the origin s.t. Xip1 = Axi + Bu;

b > Cx; + Du;j

Definition: Feasible set

The feasible set X is defined as the set of initial states x for which the MPC
problem with horizon N is feasible, i.e.
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Example: Loss of feasibility

0 1

Consider the double integrator — xT = [1 1} X+ {

subject to the input constraints —0.5<u <0.5

. -5
and the state constraints [ ] <x< [

1 0

Parameters: N =3, Q = {O 1

| R=10

Time step 1:
Xo = [-4:4], uy(x)=-0.5
Time step 2:
X =1[0;3], uz(x)=-0.5
Time step 3:
X0 =[3;2], Problem infeasible

Model Predictive Control 5-22

Set of initial
feasible states
(feasible set)
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Example: Loss of stability

2 1 1
i +
Consider the unstable system XT = [O 0_5} X+ {O] u

subject to the input constraints —-1<u<1

: —10 10
and the state constraints {10] <x< [10]

A~ _ |10
Parameters: Q = {O J

Investigate the stability properties for different horizons N and weights R by
solving the finite-horizon MPC problem in a receding horizon fashion...
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Example: Loss of stability

1. R=10,N=2
2. R=2,N=3
3. R=1,N=4

* Initial points with convergent trajectories

o Initial points that diverge

Parameters have complex effect on closed-loop trajectory
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Feasibility and stability in MPC - Main Idea

Main idea: Introduce terminal cost and constraints to explicitly ensure
stability and feasibility:

N-1

J5(x) = min > X Qxi+ ul Ry, +- Terminal cost

=0
st X1 = Ax; + Bu;
Cxi+ Du; <b
_ Terminal constraint

X0 =X

The values of P and X are chosen to simulate an infinite horizon.
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Terminal set and cost: Main idea

Problems originate from the use of a ‘short sight’ strategy

= Finite horizon causes deviation between the open-loop prediction and the
closed-loop system:

Set of feasible
Closed-loop initial states for

trajectories Open-loop 5 / " open-loop Set of initial
74]\‘ predictions prediction states leading to
o . <feasible closed-

loop trajectories

XN 0 SN
_5 i i 5
-5 0 5 -5 0 5
X X

1 1

Ideally we would solve the MPC problem with an infinite horizon, but that is
computationally intractable

Design finite horizon problem such that it approximates the infinite horizon
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How to choose terminal cost
We can split the infinite horizon problem into two subproblems:

@) For k>N, where there are no

1 Up to time k=N, where the
constraints active

constraints may be active

N-1 %
J*(x) = min Z xI Qx; + u] Ru; + min Z x| Qxi + ul Ru;
X, U P X,u Py’
st X1 = Ax; + Bu; l st xp1  =Ax+Bu, 1
Cxi+ Duj <b ' .
B Unconstrained LQR
0 =X starting from state x,

e Bound the tail of the infinite horizon cost from N to oo using the LQR

control law u = K| grx
e Xy Pxy is the corresponding infinite horizon cost P is the solution of the

discrete-time algebraic Riccati equation

Choice of N such that constraint satisfaction is guaranteed?
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How to choose terminal set

Terminal constraint provides a sufficient condition for constraint satisfaction :

N—-1
wroN TAv o Tp, Infinite horizon cost
S (x) = g ; Xi Qi+ ui Rui+ starting from x,,

st Xy = Ax; + Bu;
CX,' + DLI,' < b

X0 =X

o All input and state constraints are satisfied for the closed-loop system using
the LQR control law for x € Xf
e Terminal set is often defined by linear or quadratic constraints
— The bound holds in the terminal set and is used as a terminal cost

— The terminal set defines the terminal constraint

In the following: Show that this problem setup provides feasibility and stability
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Outline

3. Designing MPC to be Stabilizing and Invariant
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Formalize Goals: Feasibility and Stability

Goal 1: Feasibility for all time
Definition: Recursive feasibility

The MPC problem is called recursively feasible, if for all feasible initial states
feasibility is guaranteed at every state along the closed-loop trajectory.

Goal 2: Stability
Definition: Lyapunov stability

The equilibrium point at the origin of system xx11 = Axx + Br(xk) = fi(xk) is
said to be (Lyapunov) stable in X if for every € > 0, there exists a §(¢) > 0
such that, for every x(0) € X:

[x(0)[] < 8(e) = [Ix(K)|| < e Vk e N
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Reminder: Invariant sets
Definition: Invariant set

A set O is called positively invariant for system x(k + 1) = f.(x(k)), if
x(k) € O = f,(x(k)) € O, VkeN

The positively invariant set that contains every closed positively invariant set is
called the maximal positively invariant set O.

Infeasible after
one step

Invariant
- Recursively
feasible

Infeasible after
two steps
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Reminder: Lyapunov Stability

Lyapunov function

Let X be a positively invariant set for system x(k 4+ 1) = fi.(x(k)) containing
a neighborhood of the origin in its interior. A function V : X — R, is called
a Lyapunov function in X if for all x € X:
V(x) > 0Vx #£0, V(0) =0,
V(x(k+1))— V(x(k)) <0

Theorem: (e.g., [Vidyasager, 1993])

If a system admits a Lyapunov function in X, then the equilibrium point at the
origin is (Lyapunov) stable in X

IFor simplicity it is assumed that V/(x) is continuous. This assumption can be relaxed by
requiring an additional state dependent upper bound on V(x), see e.g. [Rawlings & Mayne,
2009]
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Stability and Feasibility of MPC : The Proof

Main steps:

e Prove recursive feasibility by showing the existence of a feasible control
sequence at all time instants when starting from a feasible initial point

e Prove stability by showing that the optimal cost function is a Lyapunov
function

We will discuss two main cases in the following:
1. Terminal constraint at zero: xy =0

2. Terminal constraint in some (convex) set: xy € Xr

For simplicity, we use the more general notation:

N—1
J*(x) = min E I(xi, ui) +  Vi(xn)
X,u o —— ——

stage cost  terminal cost

(In the quadratic case: I(x;, u;) = x,-TQX,- + u,TRu,-, Vi(xy) = XX/—PXN)
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Stability of MPC - Zero terminal state constraint

Terminal constraint xy = 0

 Assume feasibility of x and let [u, uf, ..., u}_4]
be the optimal control sequence computed at x 0217

@
(1]
2
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Stability of MPC - Zero terminal state constraint

Terminal constraint xy = 0

 Assume feasibility of x and let [u§, ui, ..., uj_;]
be the optimal control sequence computed at x ;6
o At x the control sequence [uf, u3, ..., uy_;, O]

2
Q
is feasible (apply 0 control input = xy,1 = 0) é,?

= Recursive feasibility v/
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Stability of MPC - Zero terminal state constraint

Terminal constraint xy = 0
Goal: Show J*(x) — J*(x*) <0

&
N—1 &
* * ok S
J(XO):Z/(X,':U/) &
i=0 N

I 0a) < J0a) = DI uix)
= z_: I(x, uf) = I(x0, ug) + I(xn, un)
= JF(x0)— I(x.u) + 1(0,0)

—— ——
Subtract cost Add cost for

at stage 0 staying at 0

= J*(x) is a Lyapunov function — (Lyapunov) Stability ¢/
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Extension to More General Terminal Sets

Problem: The terminal constrain xy = 0 reduces the size of the feasible set
Goal: Use convex set for Xr to increase the region of attraction

3 Feasible set for xy € t; Double integrator

Feasible set for x,=0

20 -5 5
<x <
) HEEH
—05<u<0.5
2
‘ /\/—5@—{3 ﬂ R=10
S E— 0 2 4 6

Goal: Generalize proof to the constraint xy € Xr
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Stability of MPC - Main Result

Standing assumptions hold:
1. The stage cost is a positive definite function, i.e. it is strictly positive and
only zero at the origin

2. The terminal set is invariant under the local control law k¢ (x):
xT = Ax + Bkr(x) € Xr forall x € Xf
All state and input constraints are satisfied in X:
Xr CX, ke(x) € Ufor all x € X¢
3. Terminal cost is a continuous Lyapunov function in the terminal set Xr:

Ve(xT) — Vr(x) < —I(x, ke(x)) for all x € Xf

Thm: The closed-loop system under the MPC control law u§(x) is stable and
the system x* = Ax + Bug(x) is invariant in the feasible set Xy.

Model Predictive Control 5-38 Model Predictive Control ME-425



Stability of MPC - Outline of the Proof

o Assume feasibility of x and let [ug, uj, ..., uy_4]
be the optimal control sequence computed at x
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Stability of MPC - Outline of the Proof

o Assume feasibility of x and let [u5, uf, ..., uyn_;]
be the optimal control sequence computed at x

o At xT, [uy, uz, ..., Ke(xy)] is feasible:
Xy is in Xr — kr(xpy) is feasible

and xy11 = Axy + Bre(xy) in Xr

= Terminal constraint provides recursive feasibility
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Stability of MPC - Outline of the Proof

-1
J(x0) = p_ 10 ui) + Vi(xu)

li

=

I
o

H H . * * *
Feasible, sub-optimal sequence for x; : [uf, U5, ..., Kr(XR)]

J0a) £ DI0¢ 1) + Vi)
= 00 01) 4 Vi) — 105 66) + Vi) — Vo0si) + (i, (33)
= J(0) — 106, 68) + Ve(ugn) — Ve(i) + 10xi i (5i)

V¢(x) is a Lyapunov function: <0

J*(x) is a Lyapunov function — (Lyapunov) Stability
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Stability of MPC - Remarks

e The terminal set Xr and the terminal cost ensure recursive feasibility and
stability of the closed-loop system.
But: the terminal constraint reduces the region of attraction.
(Can extend the horizon to a sufficiently large value to increase the region)

Are terminal sets used in practice?
e Generally not...

— Not well understood by practicioners
— Requires advanced tools to compute (polyhedral computation or LMI)

e Reduces region of attraction
— A ‘real’ controller must provide some input in every circumstance
o Often unnecessary

— Stable system, long horizon — will be stable and feasible in a (large)
neighbourhood of the origin

Model Predictive Control 5-42 Model Predictive Control ME-425



Proof of Asymptotic Stability
Definition: Asymptotic stability

Given a positively invariant set X including the origin as an interior-point,
the equilibrium point at the origin of system xxk11 = fc(xk) is said to be
asymptotically stable in X if it is

« (Lyapunov) stable
e attractive in X, i.e. limy_ ||X|| = 0 for all x(0) € X

Extension of Lyapunov's direct method: (see e.g. [Vidyasagar, 1993])
If the continuous Lyapunov function additionally satisfies

V(xk+1) — V(x) <0Vx#0
then the closed loop system converges to the origin and is hence
asymptotically stable.
Recall: Decrease of the optimal MPC cost was given by
I (Xer1) = (k) < = 1(xk, )
where the stage cost was assumed to be positive and only 0 at 0.

= The closed-loop system under the MPC control law is asymptotically stable
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Extension to Nonlinear MPC

Consider the nonlinear system dynamics: x* = f(x, u)

Nonlinear MPC problem
N—1
J(x) = rr(nun Z 1(xi, ui) + Ve(xn)
i=0
st X1 = f(x, uj)

g(xi,u) <0

XN € Xr

X0 =X

e Presented assumptions on the terminal set and cost did not rely on linearity

e Lyapunov stability is a general framework to analyze stability of nonlinear
dynamic systems

— Results can be directly extended to nonlinear systems.

However, computing the sets Xr and function V¢ can be very difficult!
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Example: Short horizon

MPC controller with input constraints |u;| < 0.262 Problem parameters:

and rate constraints |i;| < 0.349 Sampling time 0.25sec,
approximated by |ux — ug—1| < 0.349T, Q=I/,R=10 N=4
20 . . . i 05 Decrease in the prediction
£ 3“ horizon causes loss of the
5" o 1o 1; stability properties
E é Next: How to ensure
-20 : . : . s stability and constraint
0 2 4 6 8 10 . . .
Time (sec) satisfaction for all choices
g 05 of @, R and N.
ﬁ -0.5 L “‘ é L

Time (sec)
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Example: Short horizon

MPC controller with input constraints |u;| < 0.262 Problem parameters:

and rate constraints |i;| < 0.349 Sampling time 0.25sec,
approximated by |ux — ug—1| < 0.349T, Q=I/,R=10 N=4

20 ‘ ‘ ‘ ‘ 02 5 Inclusion of terminal cost
B % and constraint provides sta-
< 1°w ® 2 bility
el c
£ 0 -022
< 2

o
1% 2 4 6 8 1004
Time (sec)
5 02
8
S o4
o
[=2)
§ 0
£ -0.1
ks ‘ ‘ ‘ ‘
w025 2 4 6 8 10
Time (sec)
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Summary

Finite-horizon MPC may not be stable!
Finite-horizon MPC may not satisfy constraints for all time!

¢ An infinite-horizon provides stability and invariance.

e We ‘fake’ infinite-horizon by forcing the final state to be in an invariant set
for which there exists an invariance-inducing controller, whose
infinite-horizon cost can be expressed in closed-form.

e These ideas extend to non-linear systems, but the sets are difficult to
compute.
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Outline

4. Implementation of Linear MPC
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Linear MPC with Quadratic Cost

Standard formulation:

e Quadratic performance measure

e Linear system dynamics
e X, Xr and U are polyhedra

s.t.

N—1
min Zx,—TQx,-—I—u,-TRu,-—i—XNTQfXN
g
xi € X ie{l, ..., N-—-1}
u el ied{0,..., N—1}
Xy € X

Xi+1 = Ax; + Bu;

Assumptions: Q=QT =0, Qr =Q/ =0, R=RT =0

Next: How to write the MPC problem as a quadratic program

Model Predictive Control
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QP Formulation of MPC
Standard input form for QP software:
mzin %ZTHZ

st. Gz<g
Tz=1t

Generate matrices H, G and T and vectors g and t from the optimization
problem:

N—1
min Z T Qxi 4+ u; T Ruj + xn T Qexpy
g
st. x€X ied{1,..., N—1}
uelU ie{0,..., N-—1}
XN € Xr

Xit1 = AX; + Bu;
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QP Formulation of MPC

Formulation of matrices H, G and T and vectors g and t:

¢ Define variables:

T

2:= [ N

Un—1

e Equalities (T, t) from system dynamics x;.1 = Ax; + Bu;:

/ | —B
—A / 3 -B
T = —A / 3 —-B
I ~A I -B
[A
0
t:=1.| % t is a linear function of the current state xg!
|10
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QP Formulation of MPC

Inequalities Gz < g:

e Assume X and U given by:
X={x|Fx<fr}

e Form matrices G and g

F
F

F

CI N

0
0

Model Predictive Control

; 0
Fri
M
0
5-52

U:={vu|Mu<m}

M

0

0

X = {X |FfX§ ff}
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QP Formulation of MPC

Build cost function z” Hz from MPC cost SN " x, 7 Qx; + ui T Ruj + xn T Qrxn

Matlab hint:

H = blkdiag(kron (eye (N—1),0), Qf, kron(eye(N),R))
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