### Model Predictive Control

Lecture: Model Predictive Control

Colin Jones

Laboratoire d'Automatique, EPFL

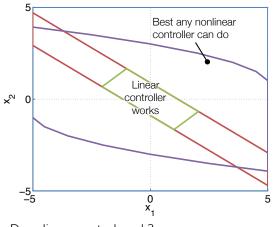
# **Recap: Objectives of Constrained Control**

$$x^{+} = f(x, u) \qquad (x, u) \in \mathbb{X}, \mathbb{U}$$

Design control law  $u = \kappa(x)$  such that the system:

- 1. Satisfies constraints :  $\{x_i\} \subset \mathbb{X}$ ,  $\{u_i\} \subset \mathbb{U}$
- 2. Is stable:  $\lim_{i\to\infty} x_i = 0$
- 3. Optimizes "performance"
- 4. Maximizes the set  $\{x_0 \mid \text{Conditions 1-3 are met}\}$

### **Limitations of Linear Controllers**



System:

$$x^{+} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} u$$

Constraints:

$$X := \{x \mid ||x||_{\infty} \le 5\}$$
  
 $U := \{u \mid ||u||_{\infty} \le 1\}$ 

Consider an LQR controller. with Q = I. R = 1.

Does linear control work?

Yes, but the region where it works is very small

Use nonlinear control (MPC) to increase the region of attraction

## **Invariance and Controlled Invariance**

- Invariant set
  - Region where **autonomous** system satisfies constraints **for all time**
- Control invariant set
  - Region where there exists a controller so that the system satisfies the constraints for all time

If we have a controlled invariant set  $C \subset \mathbb{X}$ , we can generate a controller

$$\kappa(x) := \operatorname{argmin} \{ g(x, u) \mid f(x, u) \in C, u \in \mathbb{U} \}$$

so that for all  $x \in C$ ,  $f(x, \kappa(x)) \in C \subset \mathbb{X}$  and  $\kappa(x) \in \mathbb{U}$ .

Control invariant sets are almost always too complex to compute.

• MPC is a method of **implicitly** describing a control invariant set that is easy to represent and compute!

### **Outline**

1. MPC: Key Points Illustrated

2. Stability and Invariance of MPC

3. Designing MPC to be Stabilizing and Invariant

4. Implementation of Linear MPC

## MPC: Optimization in the loop

$$u^{\star}(x) := \operatorname{argmin} \quad \sum_{i=0}^{N-1} I(x_i, u_i) + V_f(x_N)$$
s.t.  $x_0 = x$  measurement  $x_{i+1} = f(x_i, u_i)$  system model  $g(x_i, u_i) \leq 0$  constraints
$$u^{\star}(x) = \{u_0^{\star}\}, \dots, u_{N-1}^{\star}\}$$
 plant state  $x$  Plant Plant

### At each sample time:

- Measure /estimate current state
- ullet Find the optimal input sequence for the entire planning window N
- Implement only the first control action

# **History of MPC**

- Original concept: Propoi in 1963
- Mid-70's: Richalet proposed the MPC technique (called it "Model Predictive Heuristic Control (MPHC)")
- Late 70's: Cutler and Ramaker introduced Dynamic Matrix Control (DMC). Hugely successful in the petro-chemical industry.
  - Many methods followed: e.g., Quadratic Dynamic Matrix Control (QDMC), Adaptive Predictive Control (APC), Generalized Predictive Control (GPC), Sequential Open Loop Optimization (SOLO), ...
  - Constraints were generally treated in an ad-hoc fashion
- Mid-90's: an extensive theoretical effort devoted to provide conditions for guaranteeing feasibility and closed-loop stability
- 00's: development of tractable robust MPC approaches; nonlinear and hybrid MPC; MPC for very fast systems
- 10's: stochastic MPC; distributed large-scale MPC; economic MPC

# **Receding Horizon Control: The Motivation**

$$x^+ = f(x, u)$$
  $(x, u) \in \mathbb{X}, \mathbb{U}$ 

Design control law  $u = \kappa(x)$  such that the system:

- 1. Satisfies constraints :  $\{x_i\} \subset \mathbb{X}$ ,  $\{u_i\} \subset \mathbb{U}$
- 2. Is stable:  $\lim_{i\to\infty} x_i = 0$
- 3. Optimizes "performance"
- 4. Maximizes the set  $\{x_0 \mid \text{Conditions 1-3 are met}\}$

In this lecture, we will demonstrate that these objectives can be met in a predictive control framework.

(and later)

- 5 Is robust to noise
- 6. Can be computed efficiently and reliably for a wide range of systems

# **Optimal Control (Want we'd like to solve)**

Infinite horizon optimal control

$$V^{\star}(x_0) = \min \sum_{i=0}^{\infty} I(x_i, u_i)$$
s.t.  $x_{i+1} = f(x_i, u_i)$ 

$$(x_i, u_i) \in \mathbb{X}, \mathbb{U}$$

- Stage cost I(x, u) describes "cost" of being in state x and applying input u
- Optimizing over a trajectory provides a tradeoff between short- and long-term benefits of actions
- We'll see that such a control law has many beneficial properties...
  ... but we can't compute it: there are an **infinite number of variables**

# **Predictive Control (What we can sometimes solve)**

### Finite-time optimal control

$$V_N^{\star}(x_0) = \min \sum_{i=0}^{N-1} l(x_i, u_i) + V_f(x_N)$$
s.t.  $x_{i+1} = f(x_i, u_i)$ 

$$(x_i, u_i) \in \mathbb{X}, \mathbb{U}$$

$$x_N \in \mathcal{X}_f$$

#### Truncate after a finite horizon:

- $V_f$ : Approximates the 'tail' of the cost
- $\mathcal{X}_f$ : Approximates the 'tail' of the constraints

Optimal control law: 
$$\kappa_N(x) := u_0^*$$
 where  $u^* := \left\{u_0^*, \ldots, u_{N-1}^*\right\}$  is the optimizer of (1)

## Nonlinear MPC (NMPC) Properties

#### Pros

- Any model
  - linear
  - nonlinear
  - single/multivariable
  - time delays
  - constraints
  - etc
- Any objective:
  - sum of squared errors
  - sum of absolute errors (i.e., integral)
  - worst error over time
  - economic objective
  - etc

- This lecture: Conditions ensuring invariance and stability by design
  - Systems for which optimization is computationally tractable

#### Cons

- Very computationally demanding in the general case
- May or may not be stable
- May or may not be invariant

Model Predictive Control 5-11 Model Predictive Control MF-425

## **Example: Cessna Citation Aircraft**

Linearized continuous-time model:

(at altitude of 5000m and a speed of 128.2 m/sec)

$$\dot{x} = \begin{bmatrix}
-1.2822 & 0 & 0.98 & 0 \\
0 & 0 & 1 & 0 \\
-5.4293 & 0 & -1.8366 & 0 \\
-128.2 & 128.2 & 0 & 0
\end{bmatrix} x + \begin{bmatrix}
-0.3 \\
0 \\
-17 \\
0
\end{bmatrix} u$$
Angle of attack
$$y = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} x$$



- Input: elevator angle
- States:  $x_1$ : angle of attack,  $x_2$ : pitch angle,  $x_3$ : pitch rate,  $x_4$ : altitude
- Outputs: pitch angle and altitude
- Constraints: elevator angle  $\pm 0.262$ rad ( $\pm 15^{\circ}$ ), elevator rate  $\pm 0.524$ rad  $(\pm 60^{\circ})$ , pitch angle  $\pm 0.349 \ (\pm 39^{\circ})$

Open-loop response is unstable (open-loop poles: 0, 0,  $-1.5594 \pm 2.29i$ )

# LQR and Linear MPC with Quadratic Cost

- Quadratic performance measure
- Linear system dynamics
- Linear constraints on inputs and states

### LQR

$$J^{\infty}(x) = \min_{x,u} \sum_{i=0}^{\infty} x_i^T Q x_i + u_i^T R u_i$$
s.t.  $x_{i+1} = A x_i + B u_i$ 

$$x_0 = x$$

$$J^{*}(x) = \min_{x,u} \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i$$
s.t.  $x_{i+1} = A x_i + B u_i$ 

$$x_0 = x$$

### MPC

$$J^{*}(x) = \min_{x,u} \sum_{i=0}^{N-1} x_{i}^{T} Q x_{i} + u_{i}^{T} F$$
s.t. 
$$x_{i+1} = A x_{i} + B u_{i}$$

$$x_{0} = x$$

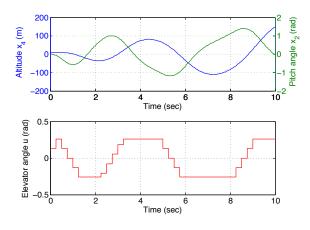
$$b \ge C x_{i} + D u_{i}$$

Assume:  $Q = Q^T \succ 0$ .  $R = R^T \succ 0$ 

## **Example: LQR with saturation**

Linear quadratic regulator with saturated inputs.

At time t = 0 the plane is flying with a deviation of 10m of the desired altitude, i.e.  $x_0 = [0; 0; 0; 10]$ 



### Problem parameters:

Sampling time 0.25sec, Q = I, R = 10

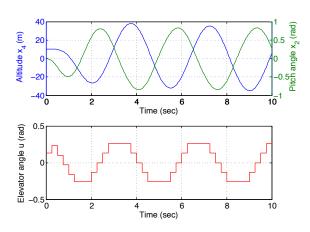
- Closed-loop system is unstable
- Applying LQR control and saturating the controller can lead to instability!

# **Example: MPC with Bound Constraints on Inputs**

MPC controller with input constraints  $|u_i| \le 0.262$ 

Problem parameters:

Sampling time 0.25sec, Q = I, R = 10, N = 10

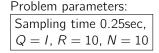


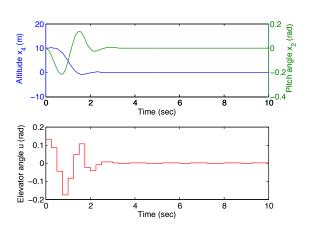
The MPC controller uses the knowledge that the elevator will saturate, but it does not consider the rate constraints.

⇒ System does not converge to desired steady-state but to a limit cycle

## **Example: MPC with all Input Constraints**

MPC controller with input constraints  $|u_i| \le 0.262$  and rate constraints  $|\dot{u}_i| \le 0.349$  approximated by  $|u_k - u_{k-1}| \le 0.349 T_s$ 



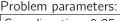


The MPC controller considers all constraints on the actuator

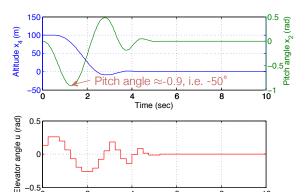
- Closed-loop system is stable
- Efficient use of the control authority

## **Example: Inclusion of state constraints**

MPC controller with input constraints  $|u_i| \le 0.262$  and rate constraints  $|\dot{u}_i| \le 0.349$  approximated by  $|u_k - u_{k-1}| \le 0.349 T_s$ 



Sampling time 0.25sec, Q = I, R = 10, N = 10



Time (sec)

### Increase step:

At time t = 0 the plane is flying with a deviation of 100m of the desired altitude, i.e.

$$x_0 = [0; 0; 0; 100]$$

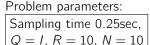
 Pitch angle too large during transient

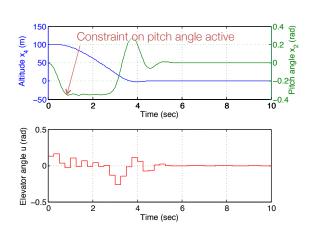
10

8

## **Example: Inclusion of state constraints**

MPC controller with input constraints  $|u_i| \le 0.262$  and rate constraints  $|\dot{u}_i| \le 0.349$  approximated by  $|u_k - u_{k-1}| \le 0.349 T_s$ 



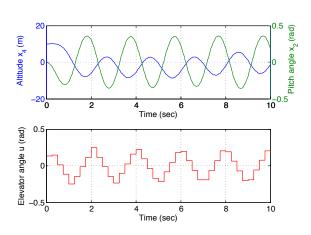


Add state constraints for passenger comfort:

$$|x_2| \le 0.349$$

## **Example: Short horizon**

MPC controller with input constraints  $|u_i| \le 0.262$  and rate constraints  $|\dot{u}_i| \le 0.349$  approximated by  $|u_k - u_{k-1}| \le 0.349 T_s$ 



### Problem parameters:

Sampling time 0.25sec, Q = I, R = 10, N = 4

Decrease in the prediction horizon causes loss of the stability properties

Next: How to ensure stability and constraint satisfaction for all choices of *Q*, *R* and *N*.

### **Outline**

1. MPC: Key Points Illustrated

2. Stability and Invariance of MPC

3. Designing MPC to be Stabilizing and Invariant

4. Implementation of Linear MPC

## Loss of Feasibility and Stability

What can go wrong with "standard" MPC?

- No feasibility guarantee, i.e., the MPC problem may not have a solution
- No stability guarantee, i.e., trajectories may not converge to the origin

$$\min_{x,u} \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i$$
s.t. 
$$x_{i+1} = A x_i + B u_i$$

$$b > C x_i + D u_i$$

#### Definition: Feasible set

The **feasible set**  $\mathcal{X}_N$  is defined as the set of initial states x for which the MPC problem with horizon N is feasible, i.e.

$$\mathcal{X}_N := \{x \mid \exists [u_0, \dots, u_{N-1}] \text{ such that } Cu_i + Dx_i \leq b, i = 1, \dots, N\}\}$$

# **Example: Loss of feasibility**

Consider the double integrator 
$$x^+ = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

subject to the input constraints  $-0.5 \le u \le 0.5$ 

and the state constraints

$$\begin{bmatrix} -5\\ -5 \end{bmatrix} \le x \le \begin{bmatrix} 5\\ 5 \end{bmatrix}$$

Parameters: 
$$N=3$$
,  $Q=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ ,  $R=10$ 

Time step 1:

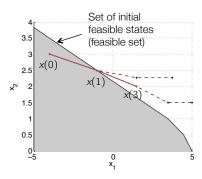
$$x_0 = [-4; 4], \quad u_0^*(x) = -0.5$$

Time step 2:

$$x_0 = [0; 3], \quad u_0^*(x) = -0.5$$

Time step 3:

$$x_0 = [3; 2]$$
, Problem infeasible



# **Example: Loss of stability**

Consider the unstable system 
$$x^{+} = \begin{bmatrix} 2 & 1 \\ 0 & 0.5 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

subject to the input constraints  $-1 \le u \le 1$ 

and the state constraints 
$$\begin{bmatrix} -10 \\ -10 \end{bmatrix} \le x \le \begin{bmatrix} 10 \\ 10 \end{bmatrix}$$

Parameters: 
$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Investigate the stability properties for different horizons N and weights R by solving the finite-horizon MPC problem in a receding horizon fashion...

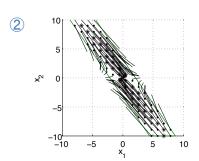
# **Example: Loss of stability**

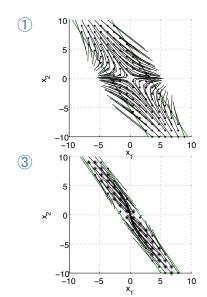
1. 
$$R = 10$$
,  $N = 2$ 

2. 
$$R = 2$$
,  $N = 3$ 

3. 
$$R = 1$$
,  $N = 4$ 

- \* Initial points with convergent trajectories
- o Initial points that diverge





Parameters have complex effect on closed-loop trajectory

## Feasibility and stability in MPC - Main Idea

**Main idea:** Introduce terminal cost and constraints to explicitly ensure stability and feasibility:

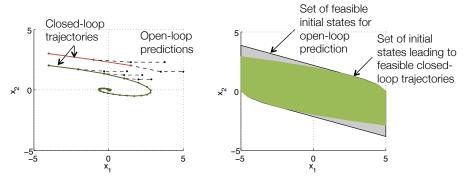
$$J^{*}(x) = \min_{\mathbf{x}, \mathbf{u}} \sum_{i=0}^{N-1} x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i} + \mathbf{x}_{N}^{T} P x_{N}$$
 Terminal cost s.t. 
$$x_{i+1} = A x_{i} + B u_{i}$$
 
$$C x_{i} + D u_{i} \leq b$$
 
$$x_{N} \in \mathcal{X}_{f}$$
 Terminal constraint 
$$x_{0} = x$$

The values of P and  $\mathcal{X}_f$  are chosen to **simulate an infinite horizon**.

### Terminal set and cost: Main idea

Problems originate from the use of a 'short sight' strategy

⇒ Finite horizon causes deviation between the open-loop prediction and the closed-loop system:



Ideally we would solve the MPC problem with an infinite horizon, but that is computationally intractable

Design finite horizon problem such that it approximates the infinite horizon

### How to choose terminal cost

We can split the infinite horizon problem into two subproblems:

Up to time k=N, where the constraints may be active

$$J^{*}(x) = \min_{\mathbf{x}, \mathbf{u}} \sum_{i=0}^{N-1} x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i} + \min_{\mathbf{x}, \mathbf{u}} \sum_{i=N}^{\infty} x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i}$$

$$\text{s.t.} \quad x_{i+1} = A x_{i} + B u_{i}$$

$$C x_{i} + D u_{i} \leq b$$

$$x_{0} = x$$

$$\text{Unconstraine starting from}$$

2 For k > N, where there are no constraints active

$$\min_{\mathbf{x},\mathbf{u}} \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i + \min_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$
s.t.  $x_{i+1} = A x_i + B u_i$ 

$$C x_i + D u_i \le b$$

$$x_0 = x$$

$$+ \min_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$s.t. x_{i+1} = A x_i + B u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$s.t. x_{i+1} = A x_i + B u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$s.t. x_{i+1} = A x_i + B u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$s.t. x_{i+1} = A x_i + B u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$s.t. x_{i+1} = A x_i + B u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

$$+ \max_{\mathbf{x},\mathbf{u}} \sum_{i=N}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

- Bound the tail of the infinite horizon cost from N to ∞ using the LQR control law  $u = K_{LOR}x$
- $x_N^T P x_N$  is the corresponding infinite horizon cost P is the solution of the discrete-time algebraic Riccati equation

Choice of *N* such that constraint satisfaction is guaranteed?

### How to choose terminal set

Terminal constraint provides a sufficient condition for constraint satisfaction:

$$J^{*}(x) = \min_{\mathbf{x}, \mathbf{u}} \quad \sum_{i=0}^{N-1} x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i} + \mathbf{x}_{N}^{T} P \mathbf{x}_{N} \quad \text{Infinite horizon of starting from } x_{N}$$

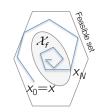
$$\text{s.t.} \quad x_{i+1} = A x_{i} + B u_{i}$$

$$C x_{i} + D u_{i} \leq b$$

$$\mathbf{x}_{N} \in \mathcal{X}_{f}$$

$$x_{0} = x$$

Infinite horizon cost



- All input and state constraints are satisfied for the closed-loop system using the LQR control law for  $x \in \mathcal{X}_f$
- Terminal set is often defined by linear or quadratic constraints
- → The bound holds in the **terminal set** and is used as a **terminal cost**.
- The terminal set defines the **terminal constraint**

In the following: Show that this problem setup provides feasibility and stability

### **Outline**

1. MPC: Key Points Illustrated

2. Stability and Invariance of MPC

3. Designing MPC to be Stabilizing and Invariant

4. Implementation of Linear MPC

# Formalize Goals: Feasibility and Stability

### Goal 1: Feasibility for all time

Definition: Recursive feasibility

The MPC problem is called **recursively feasible**, if for all feasible initial states feasibility is guaranteed at every state along the closed-loop trajectory.

### Goal 2: Stability

### Definition: Lyapunov stability

The equilibrium point at the origin of system  $x_{k+1} = Ax_k + B\kappa(x_k) = f_\kappa(x_k)$  is said to be **(Lyapunov) stable** in  $\mathcal{X}$  if for every  $\epsilon > 0$ , there exists a  $\delta(\epsilon) > 0$  such that, for every  $\kappa(0) \in \mathcal{X}$ :

$$||x(0)|| \le \delta(\epsilon) \Rightarrow ||x(k)|| < \epsilon \ \forall k \in \mathbb{N}$$

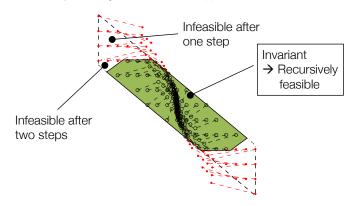
### Reminder: Invariant sets

#### Definition: Invariant set

A set  $\mathcal{O}$  is called **positively invariant** for system  $x(k+1) = f_{\kappa}(x(k))$ , if

$$x(k) \in \mathcal{O} \Rightarrow f_{\kappa}(x(k)) \in \mathcal{O}, \quad \forall k \in \mathbb{N}$$

The positively invariant set that contains every closed positively invariant set is called the maximal positively invariant set  $\mathcal{O}_{\infty}$ .



## Reminder: Lyapunov Stability

### Lyapunov function

Let  $\mathcal{X}$  be a positively invariant set for system  $x(k+1) = f_{\kappa}(x(k))$  containing a neighborhood of the origin in its interior. A function  $V: \mathcal{X} \to \mathbb{R}_+^{-1}$  is called a **Lyapunov function** in  $\mathcal{X}$  if for all  $x \in \mathcal{X}$ :

$$V(x) > 0 \,\forall x \neq 0, \ V(0) = 0,$$
  
 $V(x(k+1)) - V(x(k)) \leq 0$ 



### Theorem: (e.g., [Vidyasager, 1993])

If a system admits a Lyapunov function in  $\mathcal{X}$ , then the equilibrium point at the origin is **(Lyapunov) stable** in  $\mathcal{X}$ .

<sup>&</sup>lt;sup>1</sup>For simplicity it is assumed that V(x) is continuous. This assumption can be relaxed by requiring an additional state dependent upper bound on V(x), see e.g. [Rawlings & Mayne, 2009]

## Stability and Feasibility of MPC: The Proof

### Main steps:

- Prove recursive feasibility by showing the existence of a feasible control sequence at all time instants when starting from a feasible initial point
- Prove stability by showing that the optimal cost function is a Lyapunov function

We will discuss two main cases in the following:

- 1. Terminal constraint at zero:  $x_N = 0$
- 2. Terminal constraint in some (convex) set:  $x_N \in \mathcal{X}_f$

For simplicity, we use the more general notation:

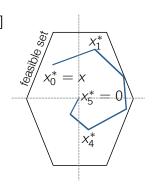
$$J^*(x) = \min_{\mathbf{x}, \mathbf{u}} \sum_{i=0}^{N-1} \underbrace{J(x_i, u_i)}_{\text{stage cost}} + \underbrace{V_f(x_N)}_{\text{terminal cos}}$$

(In the quadratic case:  $I(x_i, u_i) = x_i^T Q x_i + u_i^T R u_i$ ,  $V_f(x_N) = x_N^T P x_N$ )

## Stability of MPC - Zero terminal state constraint

#### Terminal constraint $x_N = 0$

• Assume feasibility of x and let  $[u_0^*, u_1^*, \ldots, u_{N-1}^*]$  be the optimal control sequence computed at x

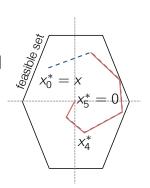


# Stability of MPC - Zero terminal state constraint

### Terminal constraint $x_N = 0$

- Assume feasibility of x and let  $[u_0^*, u_1^*, \dots, u_{N-1}^*]$  be the optimal control sequence computed at x
- At  $x^+$  the control sequence  $[u_1^*, u_2^*, \ldots, u_{N-1}^*, 0]$  is feasible (apply 0 control input  $\Rightarrow x_{N+1} = 0$ )

⇒ Recursive feasibility



# Stability of MPC - Zero terminal state constraint

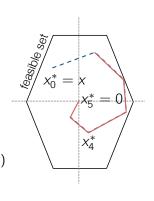
#### Terminal constraint $x_N = 0$

Goal: Show 
$$J^*(x) - J^*(x^+) < 0$$

$$J^*(x_0) = \sum_{i=0}^{N-1} I(x_i^*, u_i^*)$$
$$J^*(x_1) \le \tilde{J}(x_1) = \sum_{i=0}^{N} I(x_i^*, u_i^*)$$

$$= \sum_{i=0}^{N-1} I(x_i^*, u_i^*) - I(x_0, u_0^*) + I(x_N, u_N)$$

$$= J^*(x_0) - \underbrace{I(x, u_0^*)}_{\text{Subtract cost}} + \underbrace{I(0, 0)}_{\text{Add cost for}}$$



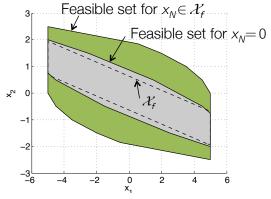
 $\Rightarrow J^*(x)$  is a Lyapunov function  $\to$  (Lyapunov) Stability  $\checkmark$ 

at stage 0 staying at 0

#### **Extension to More General Terminal Sets**

**Problem:** The terminal constrain  $x_N = 0$  reduces the size of the feasible set

**Goal:** Use convex set for  $\mathcal{X}_f$  to increase the region of attraction



Double integrator 
$$x^{+} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$\begin{bmatrix} -5 \\ -5 \end{bmatrix} \le x \le \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$
$$-0.5 \le u \le 0.5$$
$$N = 5, Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, R = 10$$

**Goal:** Generalize proof to the constraint  $x_N \in \mathcal{X}_f$ 

# Stability of MPC - Main Result

Standing assumptions hold:

- 1. The stage cost is a positive definite function, i.e. it is strictly positive and only zero at the origin
- 2. The terminal set is **invariant** under the local control law  $\kappa_f(x)$ :

$$x^+ = Ax + B\kappa_f(x) \in \mathcal{X}_f$$
 for all  $x \in \mathcal{X}_f$ 

All state and input **constraints are satisfied** in  $\mathcal{X}_f$ :

$$\mathcal{X}_f \subseteq \mathbb{X}$$
,  $\kappa_f(x) \in \mathbb{U}$  for all  $x \in \mathcal{X}_f$ 

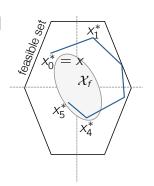
3. Terminal cost is a continuous **Lyapunov function** in the terminal set  $\mathcal{X}_f$ :

$$V_f(x^+) - V_f(x) \le -l(x, \kappa_f(x))$$
 for all  $x \in \mathcal{X}_f$ 

Thm: The closed-loop system under the MPC control law  $u_0^{\star}(x)$  is stable and the system  $x^+ = Ax + Bu_0^{\star}(x)$  is invariant in the feasible set  $\mathbb{X}_N$ .

# Stability of MPC - Outline of the Proof

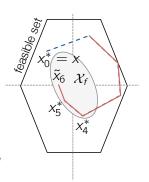
• Assume feasibility of x and let  $[u_0^{\star}, u_1^{\star}, \ldots, u_{N-1}^{\star}]$  be the optimal control sequence computed at x



# Stability of MPC - Outline of the Proof

- Assume feasibility of x and let  $[u_0^{\star}, u_1^{\star}, \ldots, u_{N-1}^{\star}]$  be the optimal control sequence computed at x
- At  $x^+$ ,  $[u_1^\star, \ u_2^\star, \ \dots, \ \kappa_f(x_N^\star)]$  is feasible:  $x_N \text{ is in } \mathcal{X}_f \to \kappa_f(x_N^\star) \text{ is feasible}$  and  $x_{N+1} = Ax_N^\star + B\kappa_f(x_N^\star) \text{ in } \mathcal{X}_f$

⇒ Terminal constraint provides recursive feasibility



# Stability of MPC - Outline of the Proof

$$J^*(x_0) = \sum_{i=0}^{N-1} I(x_i^*, u_i^*) + V_f(x_N^*)$$

Feasible, sub-optimal sequence for  $x_1$ :  $[u_1^{\star}, u_2^{\star}, \ldots, \kappa_f(x_N^{\star})]$ 

$$J^{*}(x_{1}) \leq \sum_{i=1}^{N} I(x_{i}^{*}, u_{i}^{*}) + V_{f}(\tilde{x}_{N+1})$$

$$= \sum_{i=0}^{N-1} I(x_{i}^{*}, u_{i}^{*}) + V_{f}(x_{N}^{*}) - I(x_{0}^{*}, u_{0}^{*}) + V_{f}(\tilde{x}_{N+1}) - V_{f}(x_{N}^{*}) + I(x_{N}^{*}, \kappa_{f}(x_{N}^{*}))$$

$$= J^{*}(x_{0}) - I(x, u_{0}^{*}) + \underbrace{V_{f}(\tilde{x}_{N+1}) - V_{f}(x_{N}^{*}) + I(x_{N}^{*}, \kappa_{f}(x_{N}^{*}))}_{V_{f}(x) \text{ is a Lyapunov function: } \leq 0}$$

 $J^*(x)$  is a Lyapunov function  $\to$  (Lyapunov) Stability

# **Stability of MPC - Remarks**

• The terminal set  $\mathcal{X}_f$  and the terminal cost ensure recursive feasibility and stability of the closed-loop system.

But: the terminal constraint reduces the region of attraction. (Can extend the horizon to a sufficiently large value to increase the region)

#### Are terminal sets used in practice?

- Generally not...
  - Not well understood by practicioners
  - Requires advanced tools to compute (polyhedral computation or LMI)
- · Reduces region of attraction
  - A 'real' controller must provide some input in every circumstance
- Often unnecessary
  - Stable system, long horizon → will be stable and feasible in a (large) neighbourhood of the origin

## **Proof of Asymptotic Stability**

#### Definition: Asymptotic stability

Given a positively invariant set  $\mathcal{X}$  including the origin as an interior-point, the equilibrium point at the origin of system  $x_{k+1} = f_{\kappa}(x_k)$  is said to be **asymptotically stable** in  $\mathcal{X}$  if it is

- (Lyapunov) stable
- attractive in  $\mathcal{X}$ , i.e.  $\lim_{k\to\infty} ||x_k|| = 0$  for all  $x(0) \in \mathcal{X}$

Extension of Lyapunov's direct method: (see e.g. [Vidyasagar, 1993]) If the continuous Lyapunov function additionally satisfies

$$V(x_{k+1}) - V(x_k) < 0 \ \forall x \neq 0$$

then the closed loop system converges to the origin and is hence asymptotically stable.

Recall: Decrease of the optimal MPC cost was given by

$$J^*(x_{k+1}) - J^*(x_k) \le -l(x_k, u_0^*)$$

where the stage cost was assumed to be positive and only 0 at 0.

 $\Rightarrow$  The closed-loop system under the MPC control law is asymptotically stable

#### **Extension to Nonlinear MPC**

Consider the nonlinear system dynamics:  $x^+ = f(x, u)$ 

#### Nonlinear MPC problem

$$J^*(x) = \min_{\mathbf{x}, \mathbf{u}} \quad \sum_{i=0}^{N-1} I(x_i, u_i) + V_f(x_N)$$
s.t. 
$$x_{i+1} = f(x_i, u_i)$$

$$g(x_i, u_i) \leq 0$$

$$x_N \in \mathcal{X}_f$$

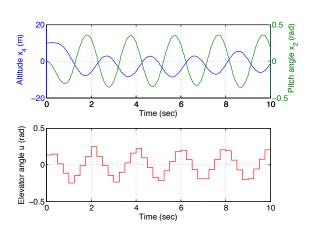
$$x_0 = x$$

- Presented assumptions on the terminal set and cost did not rely on linearity
- Lyapunov stability is a general framework to analyze stability of nonlinear dynamic systems
- $\rightarrow$  Results can be directly extended to nonlinear systems.

However, computing the sets  $\mathcal{X}_f$  and function  $V_f$  can be very difficult!

## **Example: Short horizon**

MPC controller with input constraints  $|u_i| \le 0.262$  and rate constraints  $|\dot{u}_i| \le 0.349$  approximated by  $|u_k - u_{k-1}| \le 0.349 T_s$ 



#### Problem parameters:

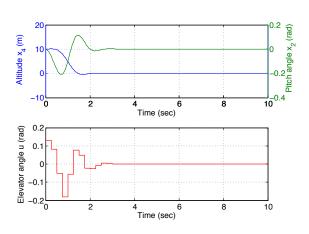
Sampling time 0.25sec, Q = I, R = 10, N = 4

Decrease in the prediction horizon causes loss of the stability properties

Next: How to ensure stability and constraint satisfaction for all choices of *Q*, *R* and *N*.

## **Example: Short horizon**

MPC controller with input constraints  $|u_i| \le 0.262$  and rate constraints  $|\dot{u}_i| \le 0.349$  approximated by  $|u_k - u_{k-1}| \le 0.349 T_s$ 



#### Problem parameters:

Sampling time 0.25sec, Q = I, R = 10, N = 4

Inclusion of terminal cost and constraint provides stability

## **Summary**

# Finite-horizon MPC may not be stable! Finite-horizon MPC may not satisfy constraints for all time!

- An infinite-horizon provides stability and invariance.
- We 'fake' infinite-horizon by forcing the final state to be in an invariant set for which there exists an invariance-inducing controller, whose infinite-horizon cost can be expressed in closed-form.
- These ideas extend to non-linear systems, but the sets are difficult to compute.

#### **Outline**

1. MPC: Key Points Illustrated

2. Stability and Invariance of MPC

3. Designing MPC to be Stabilizing and Invariant

4. Implementation of Linear MPC

# Linear MPC with Quadratic Cost

#### Standard formulation:

- Quadratic performance measure
- · Linear system dynamics
- $\mathbb{X}$ ,  $\mathcal{X}_f$  and  $\mathbb{U}$  are polyhedra

$$\min_{\mathbf{u}} \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i + x_N^T Q_f x_N$$
s.t.  $x_i \in \mathbb{X}$   $i \in \{1, ..., N-1\}$ 

$$u_i \in \mathbb{U}$$
  $i \in \{0, ..., N-1\}$ 

$$x_N \in \mathcal{X}_f$$

$$x_{i+1} = A x_i + B u_i$$

Assumptions: 
$$Q = Q^T \succeq 0$$
,  $Q_f = Q_f^T \succ 0$ ,  $R = R^T \succ 0$ 

Next: How to write the MPC problem as a quadratic program

Standard input form for QP software:

$$\min_{\mathbf{z}} \ \frac{1}{2} \mathbf{z}^T H \mathbf{z}$$
s.t.  $G \mathbf{z} \le g$ 
 $T \mathbf{z} = t$ 

Generate matrices H, G and T and vectors g and t from the optimization problem:

$$\min_{\mathbf{u}} \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i + x_N^T Q_f x_N$$
s.t.  $x_i \in \mathbb{X}$   $i \in \{1, \dots, N-1\}$ 

$$u_i \in \mathbb{U}$$
  $i \in \{0, \dots, N-1\}$ 

$$x_N \in \mathcal{X}_f$$

$$x_{i+1} = A x_i + B u_i$$

Formulation of matrices H, G and T and vectors g and t:

· Define variables:

$$\mathbf{z} := \begin{bmatrix} x_1^T & \dots & x_N^T & u_0^T & \dots & u_{N-1}^T \end{bmatrix}^T$$

• Equalities (T, t) from system dynamics  $x_{i+1} = Ax_i + Bu_i$ :

$$T := \begin{bmatrix} I & & & & -B & & \\ -A & I & & & -B & & \\ & -A & I & & & -B & & \\ & & \ddots & \ddots & & & -A & I & & -B \end{bmatrix}$$

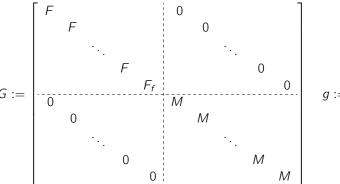
$$t := \begin{bmatrix} A \\ 0 \\ \vdots \\ 0 \end{bmatrix} x_0 \qquad t \text{ is a linear function of the current state } x_0!$$

Inequalities  $G\mathbf{z} \leq g$ :

Assume X and U given by:

$$\mathbb{X} := \{ x \mid Fx \leq f \} \qquad \mathbb{U} := \{ u \mid Mu \leq m \} \qquad \mathcal{X}_f := \{ x \mid F_fx \leq f_f \}$$

• Form matrices G and g



 $:= \begin{vmatrix} f \\ f \\ m \\ m \\ \vdots \\ m \\ m \end{vmatrix}$ 

Build cost function  $\mathbf{z}^T H \mathbf{z}$  from MPC cost  $\sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i + x_N^T Q_f x_N$ 

#### Matlab hint:

H = blkdiag(kron(eye(N-1),Q), Qf, kron(eye(N),R))