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Recap: Objectives of Constrained Control

x+ = f (x , u) (x , u) ∈ X,U

Design control law u = κ(x) such that the system:

1. Satifies constraints : {xi} ⊂ X, {ui} ⊂ U
2. Is stable: limi→∞ xi = 0

3. Optimizes “performance”

4. Maximizes the set {x0 |Conditions 1-3 are met}
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Limitations of Linear Controllers
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u

Constraints:

X := {x | ‖x‖∞ ≤ 5}
U := {u | ‖u‖∞ ≤ 1}

Consider an LQR controller,
with Q = I , R = 1.

Does linear control work?

Yes, but the region where it works is very small

Use nonlinear control (MPC) to increase the region of attraction
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Invariance and Controlled Invariance

• Invariant set
Region where autonomous system satisfies constraints for all time

• Control invariant set
Region where there exists a controller so that the system satisfies the
constraints for all time

If we have a controlled invariant set C ⊂ X, we can generate a controller

κ(x) := argmin {g(x , u) | f (x , u) ∈ C , u ∈ U}

so that for all x ∈ C , f (x , κ(x)) ∈ C ⊂ X and κ(x) ∈ U.

Control invariant sets are almost always too complex to compute.
• MPC is a method of implicitly describing a control invariant set that is
easy to represent and compute!
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Outline

1. MPC: Key Points Illustrated

2. Stability and Invariance of MPC

3. Designing MPC to be Stabilizing and Invariant

4. Implementation of Linear MPC
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MPC: Optimization in the loop

Plant


plant state x 

Output y 

u�(x) = {u�0, . . . , u�N�1}

u�(x) := argmin

N�1�

i=0

l(xi , ui) + Vf (xN)

Z�[� x0 = x TLHZ\YLTLU[
xi+1 = f (xi , ui) Z`Z[LT�TVKLS
g(xi , ui) � 0 JVUZ[YHPU[Z

At each sample time:

• Measure /estimate current state

• Find the optimal input sequence for the entire planning window N

• Implement only the first control action
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History of MPC

• Original concept: Propoi in 1963

• Mid-70’s: Richalet proposed the MPC technique (called it “Model
Predictive Heuristic Control (MPHC)”)

• Late 70’s: Cutler and Ramaker introduced Dynamic Matrix Control
(DMC). Hugely successful in the petro-chemical industry.

Many methods followed: e.g., Quadratic Dynamic Matrix Control
(QDMC), Adaptive Predictive Control (APC), Generalized Predictive
Control (GPC), Sequential Open Loop Optimization (SOLO), ...
Constraints were generally treated in an ad-hoc fashion

• Mid-90’s: an extensive theoretical effort devoted to provide conditions for
guaranteeing feasibility and closed-loop stability

• 00’s: development of tractable robust MPC approaches; nonlinear and
hybrid MPC; MPC for very fast systems

• 10’s: stochastic MPC; distributed large-scale MPC; economic MPC
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Receding Horizon Control : The Motivation

x+ = f (x , u) (x , u) ∈ X,U

Design control law u = κ(x) such that the system:

1. Satifies constraints : {xi} ⊂ X, {ui} ⊂ U
2. Is stable: limi→∞ xi = 0

3. Optimizes “performance”

4. Maximizes the set {x0 |Conditions 1-3 are met}

In this lecture, we will demonstrate that these objectives can be met in a
predictive control framework.

(and later)

5. Is robust to noise

6. Can be computed efficiently and reliably for a wide range of systems
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Optimal Control (Want we’d like to solve)
Infinite horizon optimal control

V ?(x0) = min
∞∑

i=0

l(xi , ui )

s.t. xi+1 = f (xi , ui )

(xi , ui ) ∈ X,U

• Stage cost l(x , u) describes “cost” of being in state x and applying input u

• Optimizing over a trajectory provides a tradeoff between short- and
long-term benefits of actions

• We’ll see that such a control law has many beneficial properties...
... but we can’t compute it: there are an infinite number of variables
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Predictive Control (What we can sometimes solve)
Finite-time optimal control

V ?
N(x0) = min

N−1∑

i=0

l(xi , ui ) + Vf (xN)

s.t. xi+1 = f (xi , ui )

(xi , ui ) ∈ X,U
xN ∈ Xf

(1)

Truncate after a finite horizon:

• Vf : Approximates the ‘tail’ of the cost

• Xf : Approximates the ‘tail’ of the constraints

Optimal control law: κN(x) := u?0
where u? :=

{
u?0, . . . , u

?
N−1

}
is the optimizer of (1)
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Nonlinear MPC (NMPC) Properties
Pros
• Any model

linear
nonlinear
single/multivariable
time delays
constraints
etc

• Any objective:
sum of squared errors
sum of absolute errors (i.e.,
integral)
worst error over time
economic objective
etc

Cons
• Very computationally demanding in
the general case

• May or may not be stable

• May or may not be invariant

This lecture: • Conditions ensuring invariance and stability by design
• Systems for which optimization is computationally tractable
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Example: Cessna Citation Aircraft
Linearized continuous-time model:
(at altitude of 5000m and a speed of 128.2 m/sec)

ẋ =




−1.2822 0 0.98 0
0 0 1 0

−5.4293 0 −1.8366 0
−128.2 128.2 0 0


 x +




−0.3
0
−17
0


 u

y =

[
0 1 0 0
0 0 0 1

]
x

horizon


V


Pitch angle


Angle of attack


• Input: elevator angle
• States: x1: angle of attack, x2: pitch angle, x3: pitch rate, x4: altitude
• Outputs: pitch angle and altitude
• Constraints:elevator angle ±0.262rad (±15◦), elevator rate ±0.524rad
(±60◦), pitch angle ±0.349 (±39◦)

Open-loop response is unstable (open-loop poles: 0, 0, −1.5594± 2.29i)
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LQR and Linear MPC with Quadratic Cost

• Quadratic performance measure

• Linear system dynamics

• Linear constraints on inputs and states

LQR

J∞(x) = min
x ,u

∞∑

i=0

xT
i Qxi + uT

i Rui

s.t. xi+1 = Axi + Bui

x0 = x

MPC

J?(x) = min
x ,u

N−1∑

i=0

xi
TQxi + ui

TRui

s.t. xi+1 = Axi + Bui

x0 = x

b ≥ Cxi + Dui

Assume: Q = QT � 0, R = RT � 0
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Example: LQR with saturation
Linear quadratic regulator with saturated inputs.

At time t = 0 the plane is flying with a deviation of
10m of the desired altitude, i.e. x0 = [0; 0; 0; 10]

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10

0 2 4 6 8 10
−200

−100

0

100

200

Al
tit

ud
e 

x 4 (m
)

Time (sec)
0 2 4 6 8 10

−2

−1

0

1

2

Pi
tc

h 
an

gl
e 

x 2 (r
ad

)

0 2 4 6 8 10
−0.5

0

0.5

Time (sec)

El
ev

at
or

 a
ng

le
 u

 (r
ad

)

• Closed-loop system is
unstable

• Applying LQR control
and saturating the
controller can lead to
instability!
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Example: MPC with Bound Constraints on Inputs
MPC controller with input constraints |ui | ≤ 0.262 Problem parameters:

Sampling time 0.25sec,
Q = I , R = 10, N = 10
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The MPC controller uses
the knowledge that the
elevator will saturate, but it
does not consider the rate
constraints.

⇒ System does not
converge to desired
steady-state but to a
limit cycle
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Example: MPC with all Input Constraints
MPC controller with input constraints |ui | ≤ 0.262
and rate constraints |u̇i | ≤ 0.349
approximated by |uk − uk−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 10
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The MPC controller
considers all constraints on
the actuator

• Closed-loop system is
stable

• Efficient use of the
control authority
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Example: Inclusion of state constraints
MPC controller with input constraints |ui | ≤ 0.262
and rate constraints |u̇i | ≤ 0.349
approximated by |uk − uk−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 10
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Pitch angle ≈-0.9, i.e. -50� 

Increase step:
At time t = 0 the plane is
flying with a deviation of
100m of the desired
altitude, i.e.
x0 = [0; 0; 0; 100]

• Pitch angle too large
during transient
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Example: Inclusion of state constraints
MPC controller with input constraints |ui | ≤ 0.262
and rate constraints |u̇i | ≤ 0.349
approximated by |uk − uk−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 10
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Constraint on pitch angle active

Add state constraints for
passenger comfort:

|x2| ≤ 0.349
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Example: Short horizon
MPC controller with input constraints |ui | ≤ 0.262
and rate constraints |u̇i | ≤ 0.349
approximated by |uk − uk−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 4
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Decrease in the prediction
horizon causes loss of the
stability properties

Next: How to ensure
stability and constraint
satisfaction for all choices
of Q, R and N.
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Outline

1. MPC: Key Points Illustrated

2. Stability and Invariance of MPC

3. Designing MPC to be Stabilizing and Invariant

4. Implementation of Linear MPC
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Loss of Feasibility and Stability

What can go wrong with “standard” MPC?

• No feasibility guarantee, i.e., the MPC
problem may not have a solution

• No stability guarantee, i.e., trajectories may
not converge to the origin

min
x ,u

N−1∑

i=0

xi
TQxi + ui

TRui

s.t. xi+1 = Axi + Bui

b ≥ Cxi + Dui

Definition: Feasible set

The feasible set XN is defined as the set of initial states x for which the MPC
problem with horizon N is feasible, i.e.

XN := {x | ∃[u0, . . . , uN−1] such that Cui + Dxi ≤ b, i = 1, . . . ,N})
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Example: Loss of feasibility

Consider the double integrator x+ =

[
1 1
0 1

]
x +

[
0
1

]
u

subject to the input constraints −0.5 ≤ u ≤ 0.5

and the state constraints
[
−5
−5

]
≤ x ≤

[
5
5

]

Parameters: N = 3,Q =

[
1 0
0 1

]
,R = 10

Time step 1:
x0 = [−4; 4], u?0(x) = −0.5

Time step 2:
x0 = [0; 3], u?0(x) = −0.5

Time step 3:
x0 = [3; 2], Problem infeasible

Set of initial 
feasible states

(feasible set)
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Example: Loss of stability

Consider the unstable system x+ =

[
2 1
0 0.5

]
x +

[
1
0

]
u

subject to the input constraints −1 ≤ u ≤ 1

and the state constraints
[
−10
−10

]
≤ x ≤

[
10
10

]

Parameters: Q =

[
1 0
0 1

]

Investigate the stability properties for different horizons N and weights R by
solving the finite-horizon MPC problem in a receding horizon fashion...
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Example: Loss of stability

1. R = 10, N = 2

2. R = 2, N = 3

3. R = 1, N = 4

* Initial points with convergent trajectories

◦ Initial points that diverge
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Parameters have complex effect on closed-loop trajectory
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Feasibility and stability in MPC - Main Idea

Main idea: Introduce terminal cost and constraints to explicitly ensure
stability and feasibility:

Terminal cost


Terminal constraint


J⇥(x) = min
x,u

N�1�

i=0

xTi Qxi + uT
i Rui + xTNPxN

���� xi+1 = Axi + Bui

Cxi +Dui � b

xN ⇥ Xf

x0 = x

The values of P and Xf are chosen to simulate an infinite horizon.
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Terminal set and cost: Main idea
Problems originate from the use of a ‘short sight’ strategy

⇒ Finite horizon causes deviation between the open-loop prediction and the
closed-loop system:

Set of feasible 
initial states for 
open-loop 
prediction


Set of initial 
states leading to 
feasible closed-
loop trajectories
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Closed-loop 
trajectories


Ideally we would solve the MPC problem with an infinite horizon, but that is
computationally intractable

Design finite horizon problem such that it approximates the infinite horizon
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How to choose terminal cost
We can split the infinite horizon problem into two subproblems:

�  Up to time k =N, where the 
constraints may be active


�  For k >N, where there are no 
constraints active


J⇥(x) = min
x,u

N�1�

i=0

xTi Qxi + u
T
i Rui

���� xi+1 = Axi + Bui

Cxi +Dui � b
x0 = x

+ min
x,u

��

i=N

xTi Qxi + u
T
i Rui

���� xi+1 = Axi + Bui ,

+   xN
T P xN   Unconstrained LQR 


 
 
starting from state xN 

• Bound the tail of the infinite horizon cost from N to ∞ using the LQR
control law u = KLQRx

• xN
TPxN is the corresponding infinite horizon cost P is the solution of the

discrete-time algebraic Riccati equation

Choice of N such that constraint satisfaction is guaranteed?
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How to choose terminal set
Terminal constraint provides a sufficient condition for constraint satisfaction :

t

X� 


xN 
x0=x 

Infinite horizon cost 

starting from xN 



J⇥(x) = min
x,u

N�1�

i=0

xTi Qxi + u
T
i Rui + x

T
NPxN

���� xi+1 = Axi + Bui

Cxi +Dui � b
xN ⇥ Xf
x0 = x

Feasib
le set


• All input and state constraints are satisfied for the closed-loop system using
the LQR control law for x ∈ Xf

• Terminal set is often defined by linear or quadratic constraints

→ The bound holds in the terminal set and is used as a terminal cost
→ The terminal set defines the terminal constraint

In the following: Show that this problem setup provides feasibility and stability
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Outline

1. MPC: Key Points Illustrated

2. Stability and Invariance of MPC

3. Designing MPC to be Stabilizing and Invariant

4. Implementation of Linear MPC
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Formalize Goals: Feasibility and Stability

Goal 1: Feasibility for all time
Definition: Recursive feasibility

The MPC problem is called recursively feasible, if for all feasible initial states
feasibility is guaranteed at every state along the closed-loop trajectory.

Goal 2: Stability
Definition: Lyapunov stability

The equilibrium point at the origin of system xk+1 = Axk +Bκ(xk) = fκ(xk) is
said to be (Lyapunov) stable in X if for every ε > 0, there exists a δ(ε) > 0
such that, for every x(0) ∈ X :

‖x(0)‖ ≤ δ(ε)⇒ ‖x(k)‖ < ε ∀k ∈ N

δ 
ε 

x(0) 
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Reminder: Invariant sets
Definition: Invariant set

A set O is called positively invariant for system x(k + 1) = fκ(x(k)), if

x(k) ∈ O ⇒ fκ(x(k)) ∈ O, ∀k ∈ N

The positively invariant set that contains every closed positively invariant set is
called the maximal positively invariant set O∞.

Invariant

! Recursively

     feasible



O1

Infeasible after 
one step


Infeasible after 
two steps
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Reminder: Lyapunov Stability
Lyapunov function

Let X be a positively invariant set for system x(k + 1) = fκ(x(k)) containing
a neighborhood of the origin in its interior. A function V : X → R+

1 is called
a Lyapunov function in X if for all x ∈ X :

V (x) > 0 ∀x 6= 0, V (0) = 0,

V (x(k + 1))− V (x(k)) ≤ 0

Theorem: (e.g., [Vidyasager, 1993])

If a system admits a Lyapunov function in X , then the equilibrium point at the
origin is (Lyapunov) stable in X .

1For simplicity it is assumed that V (x) is continuous. This assumption can be relaxed by
requiring an additional state dependent upper bound on V (x), see e.g. [Rawlings & Mayne,
2009]
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Stability and Feasibility of MPC : The Proof

Main steps:
• Prove recursive feasibility by showing the existence of a feasible control
sequence at all time instants when starting from a feasible initial point

• Prove stability by showing that the optimal cost function is a Lyapunov
function

We will discuss two main cases in the following:
1. Terminal constraint at zero: xN = 0

2. Terminal constraint in some (convex) set: xN ∈ Xf

For simplicity, we use the more general notation:

J∗(x) = min
x,u

N−1∑

i=0

l(xi , ui )︸ ︷︷ ︸
stage cost

+ Vf (xN)︸ ︷︷ ︸
terminal cost

(In the quadratic case: l(xi , ui ) = xT
i Qxi + uT

i Rui , Vf (xN) = xT
N PxN)
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Stability of MPC - Zero terminal state constraint

Terminal constraint xN = 0

• Assume feasibility of x and let [u∗0, u∗1, . . . , u∗N−1]
be the optimal control sequence computed at x

• At x+ the control sequence [u∗1, u∗2, . . . , u∗N−1, 0]
is feasible (apply 0 control input ⇒ xN+1 = 0)

⇒ Recursive feasibility 4

fea
sib

le 
se

t


x∗0 = x

x∗1

x∗4

x∗5 = 0

⇒ J?(x) is a Lyapunov function → (Lyapunov) Stability 4
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Stability of MPC - Zero terminal state constraint

Terminal constraint xN = 0

• Assume feasibility of x and let [u∗0, u∗1, . . . , u∗N−1]
be the optimal control sequence computed at x

• At x+ the control sequence [u∗1, u∗2, . . . , u∗N−1, 0]
is feasible (apply 0 control input ⇒ xN+1 = 0)

⇒ Recursive feasibility 4

fea
sib

le 
se

t


x∗0 = x

x∗4

x∗5 = 0

⇒ J?(x) is a Lyapunov function → (Lyapunov) Stability 4
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Stability of MPC - Zero terminal state constraint

Terminal constraint xN = 0

Goal: Show J∗(x)− J∗(x+) < 0

J∗(x0) =
N−1∑

i=0

l(x∗i , u
∗
i )

J∗(x1) ≤ J̃(x1) =
N∑

i=1

l(x∗i , ui∗)

=

N−1∑

i=0

l(x∗i , u
∗
i )− l(x0, u∗0) + l(xN , uN)

= J∗(x0)− l(x , u∗0)︸ ︷︷ ︸
Subtract cost

at stage 0

+ l(0, 0)︸ ︷︷ ︸
Add cost for

staying at 0

fea
sib

le 
se

t


x∗0 = x

x∗4

x∗5 = 0

⇒ J?(x) is a Lyapunov function → (Lyapunov) Stability 4
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Extension to More General Terminal Sets
Problem: The terminal constrain xN = 0 reduces the size of the feasible set
Goal: Use convex set for Xf to increase the region of attraction
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Feasible set for xN= 0  




Feasible set for xN ∈ X�   




X�


Double integrator

x+ =

[
1 1
0 1

]
x +

[
0
1

]
u

[
−5
−5

]
≤ x ≤

[
5
5

]

−0.5 ≤ u ≤ 0.5

N = 5,Q =

[
1 0
0 1

]
,R = 10

Goal: Generalize proof to the constraint xN ∈ Xf
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Stability of MPC - Main Result

Standing assumptions hold:
1. The stage cost is a positive definite function, i.e. it is strictly positive and

only zero at the origin

2. The terminal set is invariant under the local control law κf (x):

x+ = Ax + Bκf (x) ∈ Xf for all x ∈ Xf

All state and input constraints are satisfied in Xf :

Xf ⊆ X, κf (x) ∈ U for all x ∈ Xf

3. Terminal cost is a continuous Lyapunov function in the terminal set Xf :

Vf (x+)− Vf (x) ≤ −l(x , κf (x)) for all x ∈ Xf

Thm: The closed-loop system under the MPC control law u?0(x) is stable and
the system x+ = Ax + Bu?0(x) is invariant in the feasible set XN .
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Stability of MPC - Outline of the Proof

• Assume feasibility of x and let [u?0, u?1, . . . , u?N−1]
be the optimal control sequence computed at x

• At x+, [u?1, u?2, . . . , κf (x?N)] is feasible:

xN is in Xf → κf (x?N) is feasible

and xN+1 = Ax?N + Bκf (x?N) in Xf

⇒ Terminal constraint provides recursive feasibility

fea
sib

le 
se

t


x∗1

x∗4

x∗0 = x

x∗5

Xf
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Stability of MPC - Outline of the Proof

• Assume feasibility of x and let [u?0, u?1, . . . , u?N−1]
be the optimal control sequence computed at x

• At x+, [u?1, u?2, . . . , κf (x?N)] is feasible:

xN is in Xf → κf (x?N) is feasible

and xN+1 = Ax?N + Bκf (x?N) in Xf

⇒ Terminal constraint provides recursive feasibility
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x∗0 = x
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x̃6 Xf
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Stability of MPC - Outline of the Proof

J∗(x0) =
N−1∑

i=0

l(x∗i , u
∗
i ) + Vf (x∗N)

Feasible, sub-optimal sequence for x1 : [u?1, u?2, . . . , κf (x?N)]

J∗(x1) ≤
N∑

i=1

l(x∗i , u
∗
i ) + Vf (x̃N+1)

=

N−1∑

i=0

l(x∗i , u
∗
i ) + Vf (x∗N)− l(x∗0 , u

∗
0) + Vf (x̃N+1)− Vf (x∗N) + l(x∗N , κf (x∗N))

= J∗(x0)− l(x , u∗0) + Vf (x̃N+1)− Vf (x∗N) + l(x∗N , κf (x∗N))︸ ︷︷ ︸
Vf (x) is a Lyapunov function: ≤0

J?(x) is a Lyapunov function → (Lyapunov) Stability
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Stability of MPC - Remarks

• The terminal set Xf and the terminal cost ensure recursive feasibility and
stability of the closed-loop system.
But: the terminal constraint reduces the region of attraction.
(Can extend the horizon to a sufficiently large value to increase the region)

Are terminal sets used in practice?
• Generally not...

Not well understood by practicioners
Requires advanced tools to compute (polyhedral computation or LMI)

• Reduces region of attraction
A ‘real’ controller must provide some input in every circumstance

• Often unnecessary
Stable system, long horizon → will be stable and feasible in a (large)
neighbourhood of the origin
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Proof of Asymptotic Stability
Definition: Asymptotic stability

Given a positively invariant set X including the origin as an interior-point,
the equilibrium point at the origin of system xk+1 = fκ(xk) is said to be
asymptotically stable in X if it is

• (Lyapunov) stable
• attractive in X , i.e. limk→∞ ‖xk‖ = 0 for all x(0) ∈ X

Extension of Lyapunov’s direct method: (see e.g. [Vidyasagar, 1993])
If the continuous Lyapunov function additionally satisfies

V (xk+1)− V (xk) < 0 ∀x 6= 0

then the closed loop system converges to the origin and is hence
asymptotically stable.

Recall: Decrease of the optimal MPC cost was given by

J∗(xk+1)− J∗(xk) ≤ −l(xk , u∗0)

where the stage cost was assumed to be positive and only 0 at 0.

⇒ The closed-loop system under the MPC control law is asymptotically stable
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Extension to Nonlinear MPC
Consider the nonlinear system dynamics: x+ = f (x , u)
Nonlinear MPC problem

J∗(x) = min
x,u

N−1∑

i=0

l(xi , ui ) + Vf (xN)

s.t. xi+1 = f (xi , ui )

g(xi , ui ) ≤ 0

xN ∈ Xf

x0 = x

• Presented assumptions on the terminal set and cost did not rely on linearity
• Lyapunov stability is a general framework to analyze stability of nonlinear
dynamic systems

→ Results can be directly extended to nonlinear systems.

However, computing the sets Xf and function Vf can be very difficult!
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Example: Short horizon
MPC controller with input constraints |ui | ≤ 0.262
and rate constraints |u̇i | ≤ 0.349
approximated by |uk − uk−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 4
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Decrease in the prediction
horizon causes loss of the
stability properties

Next: How to ensure
stability and constraint
satisfaction for all choices
of Q, R and N.
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Example: Short horizon
MPC controller with input constraints |ui | ≤ 0.262
and rate constraints |u̇i | ≤ 0.349
approximated by |uk − uk−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 4
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Inclusion of terminal cost
and constraint provides sta-
bility

Next: How to ensure
stability and constraint
satisfaction for all choices
of Q, R and N.
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Summary

Finite-horizon MPC may not be stable!
Finite-horizon MPC may not satisfy constraints for all time!

• An infinite-horizon provides stability and invariance.

• We ‘fake’ infinite-horizon by forcing the final state to be in an invariant set
for which there exists an invariance-inducing controller, whose
infinite-horizon cost can be expressed in closed-form.

• These ideas extend to non-linear systems, but the sets are difficult to
compute.
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Outline

1. MPC: Key Points Illustrated

2. Stability and Invariance of MPC

3. Designing MPC to be Stabilizing and Invariant

4. Implementation of Linear MPC
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Linear MPC with Quadratic Cost
Standard formulation:
• Quadratic performance measure

• Linear system dynamics

• X, Xf and U are polyhedra

min
u

N−1∑

i=0

xi
TQxi + ui

TRui + xN
TQf xN

s.t. xi ∈ X i ∈ {1, . . . ,N − 1}
ui ∈ U i ∈ {0, . . . ,N − 1}
xN ∈ Xf

xi+1 = Axi + Bui

Assumptions: Q = QT � 0, Qf = QT
f � 0, R = RT � 0

Next: How to write the MPC problem as a quadratic program
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QP Formulation of MPC
Standard input form for QP software:

min
z

1
2
zTHz

s.t. Gz ≤ g

Tz = t

Generate matrices H, G and T and vectors g and t from the optimization
problem:

min
u

N−1∑

i=0

xi
TQxi + ui

TRui + xN
TQf xN

s.t. xi ∈ X i ∈ {1, . . . ,N − 1}
ui ∈ U i ∈ {0, . . . ,N − 1}
xN ∈ Xf

xi+1 = Axi + Bui
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QP Formulation of MPC
Formulation of matrices H, G and T and vectors g and t:

• Define variables:

z :=
[
xT
1 . . . xT

N uT
0 . . . uT

N−1
]T

• Equalities (T , t) from system dynamics xi+1 = Axi + Bui :

T :=




I −B
−A I −B

−A I −B
. . .

. . .
. . .

−A I −B




t :=




A
0
...
0


 x0 t is a linear function of the current state x0!
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QP Formulation of MPC
Inequalities Gz ≤ g:

• Assume X and U given by:

X := {x |Fx ≤ f } U := {u |Mu ≤ m} Xf := {x |Ff x ≤ ff }

• Form matrices G and g

G :=




F 0
F 0

. . .
. . .

F 0
Ff 0

0 M
0 M

. . .
. . .

0 M
0 M




g :=




f
f
...
f
ff
m
m
...
m
m



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QP Formulation of MPC
Build cost function zTHz from MPC cost

∑N−1
i=0 xi

TQxi + ui
TRui + xN

TQf xN

H :=




Q
. . .

Q
Qf

R
. . .

R




Matlab hint:

H = blkdiag(kron(eye(N−1),Q), Qf, kron(eye(N),R))
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